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Abstract. It is suggested that ageneralisation ofavariationalrelation between the equilibrium 
free energy and the pair potential also holds for changes of the system along paths of non- 
equilibrium states. Combined with a parametrised model for the radial distribution function, 
this relation leads to an expression for the configurational entropy of an amorphous phase 
in terms of empirically determined radial distributions and a given pair potential. It is applied 
in combination with the ‘structural diffusion’ model to computer simulated amorphous 
aluminium, using recently determined model parameters from the normal liquid down to 
the amorphous solid at 273 K.  The entropy difference between the liquid at melting point 
and the amorphous solid is estimated to be of the order of the entropy of melting, implying 
a negligible residual entropy. The temperature dependence of the structural diffusion coef- 
ficient, as determined from structural data, exhibits a glass transition of the amorphous 
system. 

1. Introduction 

All non-crystalline materials are expected to possess a positive (‘residual’) entropy 
in the low temperature limit T -  0. This follows from general statistical mechanical 
considerations if we accept the assumption that such materials can be represented by a 
fixed distribution of systems over a large number of different ‘frozen-in’ disordered 
states (Mazo 1963, Jackle 1981, 1984; for an early application to spin glasses, see e.g. 
Brout 1959). 

Experimentally, the existence of a residual entropy has been verified for glasses 
where calorimetric measurements of entropy change can be performed by heating the 
material along a path of macroscopic states from a low T up to a state of internal 
thermodynamic equilibrium, say up to the melting point T,. More correctly, such a 
path is not well defined over a small temperature interval around the glass transition 
temperature Tg,  but in all studied cases this ambiguity has been found to cause only a 
small error in the measured entropy change (Jackle 1981,1984). However, calorimetric 
measurements are not always applicable to amorphous materials such as metal glasses 
obtained by methods such as splat cooling, chemical and vapour deposition or sputtering 
(see e.g. Chaudhari and Turnbull 1978), where the material cannot be heated reversibly 
through a glass transition temperature. 

A theoretical evaluation of the residual entropy is possible in principle provided 
the distribution of the frozen-in states of the system is known. In practice, such a 
distribution-compatible with an ensemble over a complete orthonormal set of quantum 
states-can be calculated only for lattice systems where an enumeration of different 
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configurations can be obtained by actual counting of all possible ‘occupation states’ for 
each site or elementary unit of the lattice. Known examples are the calculated entropy 
of disordered mixed crystals (Einstein 1914), ice Ih (Pauling 1935), network models of 
vitreous silica (Bell and Dean 1968), lattice models of polymeric glasses (Gutzow 1962), 
etc. 

However, calculation of the entropies of systems such as assemblies of hard- or 
soft-core spheres, which have a continuous configuration space, presents considerable 
difficulties. Nevertheless, we will show in the following how experimental structure data 
are related to the distribution of frozen-in states in a way that provides a basis for the 
calculation of the residual (configurational) entropy of amorphous materials. 

2. Constraints and variational relations 

Formally, a system in a non-equilibrium state can always be viewed as a system in 
equilibrium under the constraint of certain fictitious external forces (Morita 1965). This 
follows from the principle of maximum entropy with constraints, which by the method 
of Lagrange multipliers produces the corresponding external potentials. Thus, let 
enumerate the sets of frozen-in states or configurations, given with probabilities p; ,  
and let s enumerate the states of the system within each configuration, with Ets the 
corresponding energies. The p E  being fixed but the states s being otherwise in thermal 
equilibrium we have 

p t  = ( Q ; / Q )  e-@W: /3 = ( k s  T)1’2 

where the vE are the external potentials of the fictitious constraining forces 

Q j  = C exp(-BE;,,) 
J 

and 

Q = exp[ -B(~ :  + ~ 5 3 ) l  (1) 
5 * S  

is the generalised partition function of the system, related to the free energy of the 
system, F ,  by /3F = -log Q. 

Without knowing the yt  explicitly, we can make certain general assumptions about 
their nature. If we view the quenching from a liquid to a glass as a process producing 
constraints on molecular pair geometries, or more generally, bounds on pair potential 
energies relative to the thermal energy kBT, we can suggest that the configurational part 
of the energies of the system be presented as a sum of pair contributions 

1 <] 

where the pair function q ( r )  can be related to an effective pair potential u(r)  by 

d r )  = Pu(r). (31 

Assuming ( 2 ) ,  we have disregarded possible contributions of many body terms to the 
constraining field and have dumped all constraints into the pair function 9 (Y), or effective 
pair potential u(r) .  
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It follows from (2) that the configurational partition function, written in the classical 
form 

Q = ( N - '  1. . . 1 exp( -z ,  q ( r i , ) )  d r ,  . . . dr, (4) 

has the same functional dependence on the pair potential, whether the system is in free 
or in constrained thermal equilibrium. Furthermore, this holds also for the variational 
relation (see e.g. Stell 1976) 

W J F )  = 1 m ( r ,  [vI)W(r) d 3r ( 5 )  

where [q] denotes the functional dependence of the radial distribution g(r)  on q. 
Relation ( 5 )  holds necessarily for any variation Sq corresponding to a variation in 

the external field I/J~ or in Tor in both. Thus, we can determine the variation of PFalong 
any path traversed by the system, whether in or out of equilibrium, provided we know 
the effective pair potential and can follow g(r) along this path. This becomes feasible in 
particular if we can construct a model of g ( r ) ,  parametrised with a small set of parameters, 
and express the constrained functional variation 6q in terms of variations of these 
parameters. 

3. The structural diffusion model 

The structural diffusion model (Baer 1977, 1978, 1987) provides a very useful example 
of a concise parametrisation of g ( r ) .  In this model the radial distribution is given explicitly 
in terms of a virtual lattice L in a 3-dimensional (or higher-dimensional (Baer 1987)) 
'structure space' associated with the local atomic structure and a 'width' function W(r) 
characterising the loss of coherence between local structures at different points in space. 
In the simplest version of the model it is given by 

where ro is an exclusion diameter and D is a 'structural diffusion' coefficient measuring 
the radial evolution of a diffusion-like process in structure space. The derived radial 
distribution function has two equivalent representations. One is a sum over the points 
of the reciprocal lattice to L 

g ( r )  = 2 C, e-Wbz(sin b,r)/b,r.  ( 7 )  

The other is a sum over the points of L 

pg(r> = ( 4 x ~ ) - * ' *  2 (4xra,)-'{exp[-(r - u , ) * / ~ w ]  + exp[-(r + a , ) * / 4 ~ ] > .  
,U 

(7a) 
From (7a) it is clear that the short-range peaks of g ( r ) ,  positioned around the a,  each 
have a dispersion of order 2W(a,). The transformation between (7) and (7a) is given by 
the Poisson sum formula (Baer 1977). 

The parameters implied in Wand L can be varied so as to achieve a good fit of ( 7 )  
with empirically obtained radial distribution functions of any condensed system. In 
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principle (7) becomes asymptotically exact in the limit of L having a very large unit cell 
(encompassing the entire bulk system) and D becoming very small (reducing g(r) to a 
sum of &functions). In practice, a good fit is obtained with very simple lattices. An 
example of such a fit is given by Lopez and Silbert (1989) who used one and the same L 
(a distorted FCC lattice) and a fixed ro together with a variable D = D(T) to obtain a 
good fit of (7) to empirical g ( r )  data from aluminium over a range of 1000 K,  from the 
normal liquid down through the supercooled liquid to a quenched amorphous phase 
(Smolander 1985, Waseda 1980). Over this range they find 

log(D/Do) = aT. (8) 

4. Entropy change and variation of g(r) 

The variation of D over the given range of temperatures defines a path from the stable 
liquid to the metastable amorphous phase. Along this path we can set g ( r )  = g ( r ,  D),  
q ( r )  = q ( r ,  D) and performing the variation (5) between two states (1 and 2) on the 
path, we obtain 

The second equality in (9) follows through integration by parts. The first term on the 
RHS of this equality is seen by (3) to be - (BE) ,  (E-a configurational energy) 
and comparing with the LHS we obtain for the configurational entropy change 

Note that (10) holds for both a constant volume and a constant pressure change with 
negligible error, because of the negligible difference between energy and enthalpy 
changes in a condensed system at low pressures. 

The path defined in (10) by variation in D can be understood in a more general sense 
as including possible simultaneous variations of the lattice L o r  even of the effective pair 
potential. Thus, in addition to the path leading to the supercooled liquid-quenched solid 
regime, (10) can also include, for example, the isothermal change of freezing at T,, 
where D changes from D = D, > 0 to D = 0 and L changes from the virtual lattice L1 of 
the liquid to the true crystalline lattice, L,. For this process, which is free of any external 
constraints, we can put q ( r )  = u(r)/kBT,. Hence the entropy change at melting becomes 

A E ,  1 
AS,=- - -  - N j u(y)[Plgl(y) - P&c(r)I d 3 r  (11) 

T ,  2Tm 
where the subscripts 1 and c refer to the liquid and crystalline phase, respectively. We 
see that here, given separate data for g(r)  in both phases, the parametrisation of g(r)  
becomes redundant. 
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Figure 1. Plot of C,(D) (J a-'/molecule) versus 
D/u (equation (12)) for amorphous AI (see 5 4): 
L ,  D data from Lopez and Silbert (1989), pair 
potential from Rautioaho (1982). a is the unit 
length of L.  
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Figure 2. Plot of D/Do versus TIT,,,: open circles 
data from Lopez and Silbert (1989); full curve, 
equation (15). 

To obtain the value of the residual entropy of an amorphous material, we now 
substitute (7) (or (7a), depending on rates of convergence of the series) into (10) and 
obtain d g ( r ,  D) /dD analytically. Then, givenL, r,and the parameters Do,  adetermining 
D ( T ) ,  the integrations in (10) can be performed numerically. Putting q ( r )  = pu(r) and 
performing the spatial integration first, we can define a generalised heat capacity C,(D) 
which is the differential increase in the energy (heat) content of the system per unit 
increase in D along the path connecting the amorphous and liquid state. Thus we have 
for the generalised specific heat per particle 

The values of this function, obtained for aluminium by numerical integration of the 
RHS of (12), using u(r)  obtained by Rautioaho (1982) from calculations based on pseudo- 
potential theory, are plotted in figure 1 for a range covering the entire set of simulation 
data from the amorphous solid to the liquid well above melting. We see here that C,(D) 
changes smoothly throughout this range. 

Using (12) and (10) we now write the entropy change per particle in the form 

We expect that on cooling an amorphous material down to T = 0, we still have 
D(T = 0) = Do > 0 and correspondingly C,(D,) > 0. (From the particular method of 
parametrisation-the structural diffusion model-we also have C,(D = 0) # 0, as can 
be seen from figure 1. (It is not clear whether this has any physical meaning or is an 
artefact of the model). Nevertheless, the true specific heat C ( T )  must approach zero at 
T-  0. By the relation 

C ( T )  = C,(D) d D / d T  (14) 
we see that C( T )  - 0 provided dD/d T-  0, and this implies that (8) cannot hold down 
to T = 0. Indeed D ( T )  must level off near this limit, as was also noted by Lopez and 
Silbert. Moreover, examining the D( T )  data one can recognise two distinct sets of points 
fitting a smooth curve obtained by combination of two different functions of T(see figure 
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for amorphous AI (see $ 5 ) .  The vertical line is at 
0 ! 

0.25 

2) representing, respectively, a liquid and a solid-like branch. We have chosen as a fitting 
formula 

D/Do = 1 + c(T/T,)l + A  exp[-bT,/Od(T - T g ) ]  (15) 
where Do/a = 1.9 x c = 2.2, A = 5.4, b = 0.4, Tg = 0.86 T,, given that the unit 
length of L is a = 2.8 A and the melting temperature T,  = 933 K. Od(x) is an integrated 
'rounded' step function, obtained by integration of a Fermi-type distribution, and is 
defined by 

o,(x) = 6 log(1 + ex',). (16) 

5. Results and discussion 

As seen from figure 2, a certain structural change is recognisable in the temperature 
range around T = Tg,  and we can identify it with some kind of glass transition. This 
transition (corresponding also to a gradual change from supercooled liquid to amorphous 
solid) is characterised by a pronounced change in the slope dD/d T.  This change can 
serve as a criterion for a glass transition. Compared with the Wendt-Abraham (WA) 
criterion (Wendt and Abraham 1978) of change of the slope of gm,,/gmax, the ratio of the 
minimum to the maximum of g ( r ) ,  as a function of T ,  we see that both criteria are based 
on characteristics of the temperature dependence of g ( r ) .  However, whereas the WA 
criterion is based on a very restricted, though pronounced feature of g(r )  , the one offered 
here is based on the properties of the entire set ofg(r) values as expressed by the function 

Using (15) we obtain dD/d  T analytically and hence, from (14), the numerically 
evaluated C( T ) ;  these are plotted in figure 3 in the temperature range of the available 
D(T) data. Having obtained C ( T ) ,  we integrate (13) between T = 273 K to T = T,  so 
as to obtain the configurational entropy change of aluminium from the amorphous solid 
to the liquid melt. We find AS = 2.9 cal K-l mol-', which is of the order of the entropy 
of melting AS, = 2.73 cal K-' mol-'. This result is based on limited D( T )  data and the 
interpolation formula (15). If we could ignore the errors involved in our estimate, as 
well as the differences between the contribution of vibrations in the amorphous and 
crystalline phases, we could obtain the absolute entropy of amorphous aluminium at 
T = 273 K from AS, - AS. However, this gives a negative value which is an indication 
of the magnitude of the errors involved. 

One source of these errors may lie in the inaccuracy of our parametrisation, which 
does not reproduce g ( r )  sufficiently faithfully over the wide range of temperatures 

D(l-1. 
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covered by the given data. This can be seen also from the obtained C(7') curve (figure 
3). Although a rise in the heat capacity with decreasing T is a general feature of 
supercooled liquids, we have here a rise of C( T )  to its maximum already around T = 
T,. We believe that such errors could be rectified by a more refined treatment of the 

parametrisation of g ( r ) ,  which should take into account a possible change of the virtual 
lattice L and include also an r-independent but T-dependent Debye-Waller-type con- 
tribution to the width function W(r)  (equation (6)), due to the vibrational motion of the 
atoms. 

Another possible error could arise from the fact that all foregoing calculations are 
based on a single effective pair-potential u(r) used for both the liquid and amorphous 
phase (see (12)). However, by definition (3) the effective potential must include the 
effect of constraints imposed by the quenching process on the amorphous phase. It has 
been suggested by Jackle (1989) that a 'constrained' effective potential can be related 
to an unconstrained potential via a certain fictive temperature T" (Jackle 1981): for 
T 3 T" an unconstrained potential u(r) is effective while for T % T "  a constrained 
potential (to be denoted by U ( r ) )  is effective and should correspond to a practically 
frozen configuration. By (4) and ( 5 )  this implies that q ( r )  should remain fixed in this 
temperature range. Thus, by (3) 

U ( r )  = k ,  T q ( r )  = (T /T" )u ( r )  

In terms of the parameter D we should have D = D" E D(T")  for T S T".  Although 
not strictly correct, figure 2 confirms the trend towards a more slowly varying D in the 
low-T range. Similarly, even if (17) is not strictly correct, our findings conform with a 
constrained effective potential whose magnitude is smaller than that of the unconstrained 
u(r). Substitution of U ( r )  from (17) for u(r) in (12) will produce a smaller value for C,(D) 
in the low-T range and correspondingly (13) will produce a smaller value for AS, or 
equivalently a larger value for the absolute entropy at T = 273 K. 

Nevertheless, we conclude from our result for AS of amorphous aluminium that its 
residual entropy (and possibly that of all close-packed one-component metal glasses) is 
negligibly small in comparison to the entropy of melting. 
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